Current Issue : October-December Volume : 2024 Issue Number : 4 Articles : 5 Articles
The aim of this study was to obtain films based on sodium alginate (SA) for disintegration in the oral cavity. The films were prepared with a solvent-casting method, and meloxicam (MLX) as the active ingredient was suspended in a 3% sodium alginate solution. Two different solid-dosageform additives containing different disintegrating agents, i.e., VIVAPUR 112® (MCC; JRS Pharma, Rosenberg, Germany) and Prosolve EASYtabs SP® (MIX; JRS Pharma, Rosenberg, Germany), were used, and four different combinations of drying time and temperature were tested. The influence of the used disintegrant on the properties of the ODFs (orodispersible films) was investigated. The obtained films were studied for their appearance, elasticity, mass uniformity, water content, meloxicam content and, finally, disintegration time, which was studied using two different methods. The films obtained with the solvent-casting method were flexible and homogeneous in terms of MLX content. Elasticity was slightly better when MIX was used as a disintegrating agent. However, these samples also revealed worse uniformity and mechanical durability. It was concluded that the best properties of the films were achieved using the mildest drying conditions. The type of the disintegrating agent had no effect on the amount of water remaining in the film after drying. The water content depended on the drying conditions. The disintegration time was not affected by the disintegrant type, but some differences were observed when various drying conditions were applied. However, regardless of the formulation type and manufacturing conditions, the analyzed films could not be classified as fast disintegrating films, as the disintegration time exceeded 30 s in all of the tested formulations....
The synergistic effect of antineoplastic drug co-encapsulation systems has made them highly regarded due to their improved pharmacological efficacy. Biopolymer-coated liposomes were evaluated for paclitaxel and doxorubicin co-encapsulation in MCF-7 and MDA-MB-231 breast cancer cell lines. These nanosystems are characterized by dynamic light scattering, transmission electron microscopy, and UV–VIS spectroscopy. The conventional and hybrid liposomal systems presented sizes of 150 to 230 nm and %EE greater than 80% for the encapsulated active ingredients. These drug-laden liposomal systems significantly decreased cell viability in both breast cancer cell lines compared with liposome-free drugs. The delivery of antineoplastic drugs in breast cancer therapy could potentially benefit from new hybrids for drug co-encapsulation....
Solid crystalline suspensions (SCSs) containing submicron particles were introduced as a competitive solution to increase dissolution rates and the bioavailability of poorly water-soluble drugs. In an SCS, poorly water-soluble drug crystals are finely dispersed in a hydrophilic matrix. Lately, melt milling as an adapted wet milling process at elevated temperatures has been introduced as a suitable batch manufacturing process for such a formulation. In this work, the transfer from batch operation to a two-step continuous process is demonstrated to highlight the potential of this technology as an alternative to other dissolution-enhancing methods. In the first step, a powder mixture of a model drug (griseofulvin) and a carrier (xylitol) is fed to an extruder, where a uniform suspension is obtained. In the second step, the suspension is transferred to a custom-built annular gap mill, where comminution down to the submicron region takes place. The prototype’s design was based on batch grinding results and a narrow residence time distribution, intended to deliver large quantities of submicron particles in the SCS. The throughput of the mill was found to be limited by grinding media compression. By inclining the mill at an angle, the grinding media position was manipulated, such that compression was avoided. Different states of the grinding media in the grinding chamber were identified under surrogate conditions. This strategy allows the maintenance of an energy-optimized comminution without adaption of the associated process parameters, even at high throughputs. Using this new process, the production of an SCS with 80–90 % submicron particles in a single passthrough was demonstrated....
New oral tablets of nebivolol have been developed aiming to improve, by cyclodextrin (CD) complexation, its low solubility/dissolution properties—the main reason behind its poor/variable oral bioavailability. Phase-solubility studies, performed using βCD and highly-soluble βCD-derivatives, indicated sulfobutylether-βCD (SBEβCD) as the best solubilizing/complexing agent. Solid drug-SBEβCD systems were prepared by different methods and characterized for solidstate and dissolution properties. The coevaporated product was chosen for tablet development since it provided the highest dissolution rate (100% increase in dissolved drug at 10 min) and almost complete drug amorphization/complexation. The developed tablets reached the goal, allowing us to achieve 100% dissolved drug at 60 min, compared to 66% and 64% obtained, respectively, with a reference tablet without CD and a commercial tablet. However, the percentage dissolved after 10 min from such tablets was only 10% higher than the reference. This was ascribed to the potential binding/compacting abilities of SBEβCD, reflected in the greater hardness and longer disintegration times of the new tablets than the reference (7.64 vs. 1.06 min). A capsule formulation with the same composition of nebivolol-SBEβCD tablets showed about a 90% increase in dissolved drug after 5 min compared to the reference tablet, and reached 100% dissolved drug after only 20 min....
Crystalline active pharmaceutical ingredients with comparable size and surface area can demonstrate surface anisotropy induced during crystallization or downstream unit operations such as milling. To the extent that varying surface properties impacts bulk powder properties, the final drug product performance such as stability, dissolution rates, flowability, and dispersibility can be predicted by understanding surface properties such as surface chemistry, energetics, and wettability. Here, we investigate the surface properties of different batches of Odanacatib prepared through either jet milling or fast precipitation from various solvent systems, all of which meet the particle size specification established to ensure equivalent biopharmaceutical performance. This work highlights the use of orthogonal surface techniques such as Inverse Gas Chromatography (IGC), Brunauer– Emmett–Teller (BET) surface area, contact angle, and X-ray Photoelectron Spectroscopy (XPS) to demonstrate the effect of processing history on particle surface properties to explain differences in bulk powder properties....
Loading....